Pecahan berkurang

Daripada testwiki
Pergi ke pandu arah Pergi ke carian

Pecahan berkurang (atau pecahan dalam sebutan paling rendah, bentuk termudah atau pecahan yang dikurangkan) ialah pecahan di mana pengangka dan penyebutnya ialah bilangan bulat yang tidak mempunyai pembahagi biasa yang lain daripada 1 (dan -1, apabila nombor negatif dipertimbangkan). Dengan kata lain, pecahan ab tidak dapat dikurangkan jika dan hanya jika a dan b adalah koprima, iaitu jika a dan b mempunyai pembahagi umum yang paling besar dari 1. Dalam matematik lebih tinggi, "pecahan tidak dapat dikurangkan" juga boleh merujuk kepada pecahan rasional sehingga pengangka dan penyebutnya ialah polinomial koprima.[1] Setiap nombor rasional positif dapat dinyatakan sebagai pecahan yang tidak dapat dikurangkan dalam satu cara.[2]

Definisi setara kadangkala berguna: jika a, b ialah bilangan bulat, maka pecahan ab tidak dapat diredakan sekiranya dan hanya jika tidak ada pecahan cd yang sama sehingga |c|<|a| atau |d|<|b|, dimana |a| bermaksud nilai mutlak a.Templat:Sfnp (Dua pecahan ab dan cd ialah sama atau setara jika dan hanya jika ad=bc.)

Contohnya, 14, 56, dan 101100 semua pecahan yang tidak dapat direduksi. Selain itu, 24 dikurangkan kerana nilainya sama 12, dan pembilang 12 lebih kecil dari pembilang 24.

Pecahan yang dikurangkan dapat dikurangkan dengan membahagi pengangka dan penyebut dengan faktor sepunya. Ia boleh dikurangkan sepenuhnya menjadi istilah terkecil jika kedua-duanya dibahagi oleh pembahagi umum yang paling hebat.[3] Untuk mencari pembahagi umum yang paling hebat, algoritma Euclid atau faktorisasi utama dapat digunakan. Algoritma Euclid umumnya disukai kerana membolehkan salah satu daripadanya mengurangkan pecahan dengan pengangka dan penyebut yang terlalu besar dapat difaktorkan dengan mudah.

Rujukan

Templat:Reflist

Pautan luar